Zeros of Ramanujan Polynomials
نویسندگان
چکیده
In this paper, we investigate the properties of Ramanujan polynomials, a family of reciprocal polynomials with real coefficients originating from Ramanujan’s work. We begin by finding their number of real zeros, establishing a bound on their sizes, and determining their limiting values. Next, we prove that all nonreal zeros of Ramanujan polynomials lie on the unit circle, and are asymptotically uniformly distributed there. Finally, for each Ramunujan polynomial, we find all its zeros that are roots of unity.
منابع مشابه
Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials
In this paper we highlight the connection between Ramanujan cubic polynomials (RCPs) and a class of polynomials, the Shanks cubic polynomials (SCPs), which generate cyclic cubic fields. In this way we provide a new characterization for RCPs and we express the zeros of any RCP in explicit form, using trigonometric functions. Moreover, we observe that a cyclic transform of period three permutes t...
متن کاملZeros of generalized Rogers-Ramanujan series: Asymptotic and combinatorial properties
In this paper we study the properties of coefficients appearing in the series expansions for zeros of generalized Rogers-Ramanujan series. Our primary purpose is to address several conjectures made by M. E. H Ismail and C. Zhang. We prove that the coefficients in the series expansion of each zero approach rational multiples of π and π as q → 1−. We also show that certain polynomials arising in ...
متن کاملUnimodularity of Zeros of Self-inversive Polynomials
We generalise a necessary and sufficient condition given by Cohn for all the zeros of a self-inversive polynomial to be on the unit circle. Our theorem implies some sufficient conditions found by Lakatos, Losonczi and Schinzel. We apply our result to the study of a polynomial family closely related to Ramanujan polynomials, recently introduced by Gun, Murty and Rath, and studied by Murty, Smyth...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کامل